3.296 \(\int \frac{\tan ^2(c+d x)}{a+b \sec (c+d x)} \, dx\)

Optimal. Leaf size=76 \[ -\frac{2 \sqrt{a-b} \sqrt{a+b} \tanh ^{-1}\left (\frac{\sqrt{a-b} \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a+b}}\right )}{a b d}-\frac{x}{a}+\frac{\tanh ^{-1}(\sin (c+d x))}{b d} \]

[Out]

-(x/a) + ArcTanh[Sin[c + d*x]]/(b*d) - (2*Sqrt[a - b]*Sqrt[a + b]*ArcTanh[(Sqrt[a - b]*Tan[(c + d*x)/2])/Sqrt[
a + b]])/(a*b*d)

________________________________________________________________________________________

Rubi [A]  time = 0.184586, antiderivative size = 76, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 7, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.333, Rules used = {3894, 4051, 3770, 3919, 3831, 2659, 208} \[ -\frac{2 \sqrt{a-b} \sqrt{a+b} \tanh ^{-1}\left (\frac{\sqrt{a-b} \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a+b}}\right )}{a b d}-\frac{x}{a}+\frac{\tanh ^{-1}(\sin (c+d x))}{b d} \]

Antiderivative was successfully verified.

[In]

Int[Tan[c + d*x]^2/(a + b*Sec[c + d*x]),x]

[Out]

-(x/a) + ArcTanh[Sin[c + d*x]]/(b*d) - (2*Sqrt[a - b]*Sqrt[a + b]*ArcTanh[(Sqrt[a - b]*Tan[(c + d*x)/2])/Sqrt[
a + b]])/(a*b*d)

Rule 3894

Int[cot[(c_.) + (d_.)*(x_)]^2*(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_), x_Symbol] :> Int[(-1 + Csc[c + d*x]
^2)*(a + b*Csc[c + d*x])^n, x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[a^2 - b^2, 0]

Rule 4051

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[C/b, I
nt[Csc[e + f*x], x], x] + Dist[1/b, Int[(A*b - a*C*Csc[e + f*x])/(a + b*Csc[e + f*x]), x], x] /; FreeQ[{a, b,
e, f, A, C}, x]

Rule 3770

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rule 3919

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Simp[(c*x)/a,
x] - Dist[(b*c - a*d)/a, Int[Csc[e + f*x]/(a + b*Csc[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[
b*c - a*d, 0]

Rule 3831

Int[csc[(e_.) + (f_.)*(x_)]/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[1/b, Int[1/(1 + (a*Sin[e
 + f*x])/b), x], x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 2659

Int[((a_) + (b_.)*sin[Pi/2 + (c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = FreeFactors[Tan[(c + d*x)/2], x
]}, Dist[(2*e)/d, Subst[Int[1/(a + b + (a - b)*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}
, x] && NeQ[a^2 - b^2, 0]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{\tan ^2(c+d x)}{a+b \sec (c+d x)} \, dx &=\int \frac{-1+\sec ^2(c+d x)}{a+b \sec (c+d x)} \, dx\\ &=\frac{\int \sec (c+d x) \, dx}{b}+\frac{\int \frac{-b-a \sec (c+d x)}{a+b \sec (c+d x)} \, dx}{b}\\ &=-\frac{x}{a}+\frac{\tanh ^{-1}(\sin (c+d x))}{b d}-\left (\frac{a}{b}-\frac{b}{a}\right ) \int \frac{\sec (c+d x)}{a+b \sec (c+d x)} \, dx\\ &=-\frac{x}{a}+\frac{\tanh ^{-1}(\sin (c+d x))}{b d}-\frac{\left (\frac{a}{b}-\frac{b}{a}\right ) \int \frac{1}{1+\frac{a \cos (c+d x)}{b}} \, dx}{b}\\ &=-\frac{x}{a}+\frac{\tanh ^{-1}(\sin (c+d x))}{b d}-\frac{\left (2 \left (\frac{a}{b}-\frac{b}{a}\right )\right ) \operatorname{Subst}\left (\int \frac{1}{1+\frac{a}{b}+\left (1-\frac{a}{b}\right ) x^2} \, dx,x,\tan \left (\frac{1}{2} (c+d x)\right )\right )}{b d}\\ &=-\frac{x}{a}+\frac{\tanh ^{-1}(\sin (c+d x))}{b d}-\frac{2 \sqrt{a-b} \sqrt{a+b} \tanh ^{-1}\left (\frac{\sqrt{a-b} \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a+b}}\right )}{a b d}\\ \end{align*}

Mathematica [A]  time = 0.14621, size = 115, normalized size = 1.51 \[ -\frac{-2 \sqrt{a^2-b^2} \tanh ^{-1}\left (\frac{(b-a) \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a^2-b^2}}\right )+a \log \left (\cos \left (\frac{1}{2} (c+d x)\right )-\sin \left (\frac{1}{2} (c+d x)\right )\right )-a \log \left (\sin \left (\frac{1}{2} (c+d x)\right )+\cos \left (\frac{1}{2} (c+d x)\right )\right )+b c+b d x}{a b d} \]

Antiderivative was successfully verified.

[In]

Integrate[Tan[c + d*x]^2/(a + b*Sec[c + d*x]),x]

[Out]

-((b*c + b*d*x - 2*Sqrt[a^2 - b^2]*ArcTanh[((-a + b)*Tan[(c + d*x)/2])/Sqrt[a^2 - b^2]] + a*Log[Cos[(c + d*x)/
2] - Sin[(c + d*x)/2]] - a*Log[Cos[(c + d*x)/2] + Sin[(c + d*x)/2]])/(a*b*d))

________________________________________________________________________________________

Maple [B]  time = 0.054, size = 153, normalized size = 2. \begin{align*} -2\,{\frac{\arctan \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) }{ad}}-2\,{\frac{a}{db\sqrt{ \left ( a+b \right ) \left ( a-b \right ) }}{\it Artanh} \left ({\frac{ \left ( a-b \right ) \tan \left ( 1/2\,dx+c/2 \right ) }{\sqrt{ \left ( a+b \right ) \left ( a-b \right ) }}} \right ) }+2\,{\frac{b}{ad\sqrt{ \left ( a+b \right ) \left ( a-b \right ) }}{\it Artanh} \left ({\frac{ \left ( a-b \right ) \tan \left ( 1/2\,dx+c/2 \right ) }{\sqrt{ \left ( a+b \right ) \left ( a-b \right ) }}} \right ) }+{\frac{1}{db}\ln \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) +1 \right ) }-{\frac{1}{db}\ln \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) -1 \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(d*x+c)^2/(a+b*sec(d*x+c)),x)

[Out]

-2/d/a*arctan(tan(1/2*d*x+1/2*c))-2/d/b*a/((a+b)*(a-b))^(1/2)*arctanh((a-b)*tan(1/2*d*x+1/2*c)/((a+b)*(a-b))^(
1/2))+2/d*b/a/((a+b)*(a-b))^(1/2)*arctanh((a-b)*tan(1/2*d*x+1/2*c)/((a+b)*(a-b))^(1/2))+1/d/b*ln(tan(1/2*d*x+1
/2*c)+1)-1/d/b*ln(tan(1/2*d*x+1/2*c)-1)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^2/(a+b*sec(d*x+c)),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 0.864895, size = 599, normalized size = 7.88 \begin{align*} \left [-\frac{2 \, b d x - a \log \left (\sin \left (d x + c\right ) + 1\right ) + a \log \left (-\sin \left (d x + c\right ) + 1\right ) - \sqrt{a^{2} - b^{2}} \log \left (\frac{2 \, a b \cos \left (d x + c\right ) -{\left (a^{2} - 2 \, b^{2}\right )} \cos \left (d x + c\right )^{2} - 2 \, \sqrt{a^{2} - b^{2}}{\left (b \cos \left (d x + c\right ) + a\right )} \sin \left (d x + c\right ) + 2 \, a^{2} - b^{2}}{a^{2} \cos \left (d x + c\right )^{2} + 2 \, a b \cos \left (d x + c\right ) + b^{2}}\right )}{2 \, a b d}, -\frac{2 \, b d x - a \log \left (\sin \left (d x + c\right ) + 1\right ) + a \log \left (-\sin \left (d x + c\right ) + 1\right ) + 2 \, \sqrt{-a^{2} + b^{2}} \arctan \left (-\frac{\sqrt{-a^{2} + b^{2}}{\left (b \cos \left (d x + c\right ) + a\right )}}{{\left (a^{2} - b^{2}\right )} \sin \left (d x + c\right )}\right )}{2 \, a b d}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^2/(a+b*sec(d*x+c)),x, algorithm="fricas")

[Out]

[-1/2*(2*b*d*x - a*log(sin(d*x + c) + 1) + a*log(-sin(d*x + c) + 1) - sqrt(a^2 - b^2)*log((2*a*b*cos(d*x + c)
- (a^2 - 2*b^2)*cos(d*x + c)^2 - 2*sqrt(a^2 - b^2)*(b*cos(d*x + c) + a)*sin(d*x + c) + 2*a^2 - b^2)/(a^2*cos(d
*x + c)^2 + 2*a*b*cos(d*x + c) + b^2)))/(a*b*d), -1/2*(2*b*d*x - a*log(sin(d*x + c) + 1) + a*log(-sin(d*x + c)
 + 1) + 2*sqrt(-a^2 + b^2)*arctan(-sqrt(-a^2 + b^2)*(b*cos(d*x + c) + a)/((a^2 - b^2)*sin(d*x + c))))/(a*b*d)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\tan ^{2}{\left (c + d x \right )}}{a + b \sec{\left (c + d x \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)**2/(a+b*sec(d*x+c)),x)

[Out]

Integral(tan(c + d*x)**2/(a + b*sec(c + d*x)), x)

________________________________________________________________________________________

Giac [B]  time = 1.58747, size = 189, normalized size = 2.49 \begin{align*} -\frac{\frac{d x + c}{a} - \frac{\log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 1 \right |}\right )}{b} + \frac{\log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - 1 \right |}\right )}{b} + \frac{2 \,{\left (\pi \left \lfloor \frac{d x + c}{2 \, \pi } + \frac{1}{2} \right \rfloor \mathrm{sgn}\left (-2 \, a + 2 \, b\right ) + \arctan \left (-\frac{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}{\sqrt{-a^{2} + b^{2}}}\right )\right )}{\left (a^{2} - b^{2}\right )}}{\sqrt{-a^{2} + b^{2}} a b}}{d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^2/(a+b*sec(d*x+c)),x, algorithm="giac")

[Out]

-((d*x + c)/a - log(abs(tan(1/2*d*x + 1/2*c) + 1))/b + log(abs(tan(1/2*d*x + 1/2*c) - 1))/b + 2*(pi*floor(1/2*
(d*x + c)/pi + 1/2)*sgn(-2*a + 2*b) + arctan(-(a*tan(1/2*d*x + 1/2*c) - b*tan(1/2*d*x + 1/2*c))/sqrt(-a^2 + b^
2)))*(a^2 - b^2)/(sqrt(-a^2 + b^2)*a*b))/d